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Abstract

The power transmission and loss at a discontinuity in
planar optical Waveguides are calculated numerically using
the Beam Propagation Method (BPM) for transverse eletric
modes. A single step discontinuity including changes in
core thickness and refractive index are considered as well
S symmetric double Step discontinuity. A comparison
between the results obtained by this method and those
obtained by three other methods shows a good agreement.

Introduction

calculated by means of many well known techniques:
variational (1), mode matching (=27, Wiener-Hopf (21, residue
calculust<) and Green's functionts!, All of these methods
are relatively complicated and usually require the solution
of an infinite System of equations or the expansion of the
electromagnetic field in terms of an infinite set of
orthogonal functions or pPolynomials which are oscillatory,
and this requires a great care to guarantee the stability
and the convergence of the solution.

In many practical integrated optical devices, we need
abricate two or more optical waveguides with different
optogeometric Properties on the same substrate. At the
junction between such waveguides, there exist transmitted
and reflected fields. Fortunately. in many practical
cases, these nonidentical waveguides have slightly
different optogeometric properties : small variations in
the refractive index and the waveguide's thickness. This
allows us to neglect the reflected field. In such cases
the BPM(81.(7) can pe used efficiently to calculate the
transmitted field through a junction between two
nonidentical waveguides. Of course the method can be
applied to optical waveguides with two-dimensional
confinement of the light power 1like optical fibers, but in
Lhis case a two dimensional Fourier transform is required
instead of the one-dimensional transform needed for planar
waveguides.
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Theory

The BPM consists basically of propagating the
electromagnetic field over a small distance Az through a
homogeneous medium and then correcting for the refractive
index variations during the propagation distance Az.

Let us assume that E,(x,z)y is the propagating
electric field in a y-invariant inhomogeneous planar
optical waveguide, where 9 is a unit vector in the y-
direction. This field is the solution of the scalar wave
equation:

2 ]
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E=
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where Ve is the transverse laplacian ©2/0x2, kois the free
space wave number, and n(x) is the refractive index
distribution in the direction transverse to the direction
of propagation z. The time dependence is assumed to be
exp(iwt), where w is the radial frequency of the
electromagnetic field and i=y=1. The solution of (1)
at z=Az2 may be written formally in terms of the field at
- 2=0 as followstsl;
2 2
_1AZIVt + kona(x)llla
Ey(x.42) = e .Ey(x,0) (2)

The square rcoot in (2) may be written as:

2 2 2
[ Vo + kan2(x)j272= Ve ' tKon(x)——(3)
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If n(x) in the first right-hand member of (3) "ig replaced
by a certain constant value n. (typically the substrate
index of refrdction), an approximation to (2) takes the
form:

2 =2 2 2
 ~i82{[Ve/(Vetkons) */ 4kona ] +Ko [N (%) —Nal )
Ey(x,Az)=e ‘ By (x,0)-—(4)

Each squared braket in the exponential of (4) is an _
operator; these two operators do not commute, but to the
second order in Az, equation (4) can be written astel.

E,(x.42) = P.Q.P {Ey(x,0)} (5)
where P and Q are the two operators:
= 2 2 2 i
=1 AZ{ Y/ [(Vet+ kona)r”2 + Kenel )
P =g P S =~ el ¢ (6)

and
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~1 _A_'-l{ko[n(X)"no]}
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Operating with P on Ey(x.0) is simply a propagation of the
field in a homogeneous medium (whose index is Ns) over a
distance Az/2. The operator  accounts for the variations
in the index of refraction n(x). The error introduced in
the solution (5) is proportional to (pAz)®and hence small
pPropagating steps are necessary to obtain well accurate
results(?). The direct operation of P on E,(x,0) involves
the expansion of the exponential operator (6) in an
infinite series of differential operators which are
éxtremely difficult to treat in numerical applications,
however 1f we consider the spatial Fourier transform of
Ey (x,0), the pPropagation over Az/2 is reduced to a simple
multiplication of the transform of Ey(x,0) and the
transform of the operator P which is simplyte)

2 2 2 =2
182( ke / [(keNas = Ke)2“24kang] }
2

F{(P; = e o (8)
where F{P} denotes the Fourier transform of P and k. is the
variable of the transform. Although in the BPM we deal with
the total propagating field regardless of its modal
content, we can restore €asily the modal behaviour of
Ey(x.2) through the eigenmode expansion(®il .

=14,z
Ey(x.2) = Ztneyn(x) e ' b B0 )
n

where e,n(x) is the transverse distribution of the
electromagnetic field ¢f the nth guided mode propagating in
the z-direction with a propagation constant 4,. The
radiation field in the eigennode expansion (9) has the form
of a Fourier integral which is denoted by R. The constant
ta is ths €Xpansion coefficient of the n+h quided mode of
the waveguiding structure. This coefficient can be
calculated by taking the scalar product of (9) with the
complex conjugate €¥n (X)exp (if,.2) :

(s}
SEy(x.z).é;n(x) dx

ta = = (10)

S |eyn (x)? dx

The power P, carried by that mode is simply:
Qo

Pn = |t A, S |eyn(X)® dx -—- - —(11)
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The propagation of the total field from z to z+ Az is
performed through three steps: the operator P (the
propagator) is applied on E,(x,z) using the Fourier
transform; the resulting field is then operated on by
(the corrector) giving rise to the corrected field,
finallly the corrected rield is operated on by P to obtain
the total field at z+ Az. This process can be continued
until the desired pPropagation distance is reached.

A symmetric sinqgle step discontinuity

A single step discontinuity consisting of two butt-—-
Joined nonidentical Symmetric waveguides is shown in figure
1. This case was studied pPreviously by Marcuse (91 using an
approximate modz matching technique, Ittipiboon et.al. (<1
Studied the same case using residue calculus technique,
a@lso Nishimura et.al. (101 used an approximate integral
equation formulation to calculate the relative radiated
power P, (the ratio between the power lost by radiation and
the power carried by the incident mode from the left of the
Step). Figure 1 shows the results of the BPM (solid dots)
and those of the three previous techniques, where P, is
plotted as a function of kodi when dz/d, is kept constant
equal to 0.5 and the wavelength is equal to 0.6328 pm.

An asymmetric single step

The second case we considered was an asymmetric step
which was studied rigorously by Boyd et. al. 111 using a
discrete representation of the radiation field. Figure 2
shows the magnitude of the transmission coefficient |t.| of
the fundamental mode (i.e. n=0) as a function of keda when
the step ratio d=/d.=0.5 at a wavelength equal to 0.6328
micron. The solid dots represent the results of the EBPM.

The fairly good agreement between the results of the
BPM and the other methods is due to the rfact that the
forward radiated power is much higher than the reflected
guided and backscattered radiated power for a step ratio
e€qual to 0.5 as pointed out by Marcuse (o), This means that
the losses are mainly due to forward scattering; and this
justifies the fundamental approximation used in the BPM:
the reflected field can be neglected. ;

Double step

It is well known that a dielectric optical waveguide
allows, besides a finite number of guided modes, a
continuum of modes. The modes within a finite range of the
continuum are Propagating: the rest represent energy stored
locally in the neighborhocd of the discontinuity (non
Propagating medes). In the double step shown in figure 3,
the input waveguide (to the left of the Step S1) is single

L .
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mode and identical to the output waveguide (to the right of
the step S2); while the intermediate guide of length L
allows the first two even guided TE modes to propagate.
When the fundamental mode of the input guide is incident
Irom the left it is scattered by the step S1 in all guided
modes allowed at either side of S1 as well as in the
continuous spectrum of modes. After propagating away from
the step S1, the guided modes and the propagating part of
the continuous spectrum are again scattered by the second
step S2, so that interference between the fields scattered
by S1 and S2 takes place: we say that the propagating part

. of the continuous spectrum of modes excited at one step

i "sees" the adjacent step. On the other hand, the phase of
the transmitted guided mode at the output waveguide depends
on the length L of the intermediate guide. These
interferences influence the guided transmitted field at the
output waveguide and the transmission coefficient |ts] of the
fundamental mode at the output waveguide exhibits
oscillations as function of L.; this phenomena was pointed
out by Rozzitiz1, Biehligt22) and Koshiba et.al. (1<)
Figure 3 shows the results obtained by the BPM, where the
pericd of the oscillation of tois approximately equal to 80
microns.

Conclusion

To the author's knowledge, the BPM applied to the
problem of waveguide discontinuity is presented for the
first time in this paper. The -agreement between the results
obtained by the BPM and those obtained by other methods is
fairly good. The ability to treat a phase-sensitive
discontinuity using the BPM is proved by considering a
double step. We think that the BPM is one of the powerrul
and simple methods that can deal with optical wavegquide
discontinuities, and may be it will be the most convenient
and the simplest method for studying the discontinuities in
waveguides having arbitrary refractive index distributions.
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Figure 1 — A symmetric step discontinuity:
Integral equation method
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Figure 2 - An asymmetric step discontinuity:

Rigorous mode matching technique
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Figure 3 - 2 symmetric double step diécontinuity:
d1=0.5dz =3.5 micron and the wavelength
is equal to 0.6328 micron.
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